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Two-Mode Waveguide for Equal Mode
Velocities : Correction

N. G. ALEXOPOULOS axp M. E. ARMSTRONG

Abstract—The T-septum waveguide was analyzed by Elliott using
the orthonormal block method. The numerical results did not com-
pare favorably with experimental measurements and it was sug-
gested that the disparity was related primarily to the assumption of
zero-thickness membranes for the septum. Later, Silvester analyzed
the T-septum waveguide using a finite-element method and found
very good agreement with the measured points, yet the septum thick~
ness was again assumed to be infinitesimal. This letter is being writ-
ten to dispel the implication that the orthonormal block method of
analysis of the T-septum waveguide suffers for lack of accuracy. The
universal curves as shown by Elliott will be presented here in cor-
rected form along with experimental results further corroborating
both Elliott’s and Silvester’s work.

Elliott’s analysis [1] of the T-septum waveguide using the ortho-
normal block method has been corroborated by recent numerical cal-
culations utilizing his theoretical formulation and by additional ex-
perimental measurements. It has been determined that errors existed
in the original computer program used for the determination, numer-
ically, of cutoff wavenumbers from the difference-mode Rayleigh—
Ritz approximation.

Fig. 1. T-septum waveguide geometry.

The T-septum waveguide geometry is indicated in Fig. 1, and the
corrected cutoff wavenumbers for the sum and difference modes are
shown in Fig. 2 for a range of septum dimensions. Fig. 3 shows the
calculated guide wavelengths for the cases k/b=0.3, 0.5 and 0.8,
along with experimentally determined guide wavelengths for these
same T-septum aspect ratios. The heavy solid curves (theoretical)
and the heavy dashed curve (experimental) in Figs. 2 and 3 give d as
a function of # such that, over the frequency range for which these
two modes propagate, their phase velocities will be equal. It is noted
that there is satisfactory correspondence between experimental and
theoretical characteristics for moderate septum insertion depths and
that the results deviate markedly for large insertion depths, possibly
because of the considerable difference between theoretical and experi-
mental T-septum models. However, in the region of interest, namely
for those values of insertion depth for which the phase velocities of
the two modes are equal, there is excellent agreement, indicating,
therefore, the validity of the theoretical model for predicting the
physical model characteristics.

For purposes of comparison the current theoretical and experi-
mental data are presented in Fig. 4 (/b=0.3) along with the theo-
retical characteristics determined earlier by Silvester (5/6=0.3) [2]

Manuscript received September 22, 1972.
. N. G. Alexopoulos is with the Electrical Sciences and Engineering Department,
University of California, Los Angeles, Calif.
. E. Armstrong is with the Electromagnetics Laboratory, Ground Systems
Group, Hughes Aircraft Company, Fullerton, Calif, 92634.

157
h/b
28 I RFIAK S
Sl S5 oo g o
%
5
A \2
%)
%
o
%O h/b
\ Y \® summops |
A 6
& ﬁ 0.1
0.30
3.0 2 &: 0.32
0.48
~N
k a
< .
\ - 0.64
\ \
&YX -
N 0.88
\ \ %
2.0 N \ \Y
N 0.96
N\ \ N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
d/a
Fig. 2. Cutoff wavenumbers for sum and difference modes.
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Fig, 4, Comparison of results.

and Elliott (2/b=0.32). The theoretical-sum mode characteristic
nearly matches for the three cases and is not shown.
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On the Solution of the Circularly Cylindrical Coordinate
Wave Equation in Homogeneous Isotropic
Regions Containing the Coordinate Axis

D. M. BOLLE

Abstract—In a number of well-known texts, misleading state-
ments are made concerning the reason for eliminating the Neumann
or Bessel function of the second kind from the solution of the wave
equations in circular cylindrical coordinates for a homogeneous
region containing the coordinate axis. This letter discusses the con-
ditions that are required to arrive at a unique solution.

In several texts generally consulted by students in the field of
electromagnetic theory [1]-[5], erroneous and misleading state-
ments are made concerning the reason for excluding the Bessel func-
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tions of the second kind from the solution of the wave equation in
circular cylindrical coordinates in isotropic homogeneous regions
containing the axis. The condition used is that the field quantities, in
these cases Ez or Hz, must be bounded. Two objections to such a
condition must be made. First, the statement is misleading in that
students infer too readily that field components must always be
bounded in such situations. Such is certainly not the case, e.g., in
geometries where the boundaries exhibit sharp edges. Secondly, such
a statement or condition does not rest on a demonstrable physical
principle.

The finite energy condition, i.e., square integrability, can be
invoked at this point and may be stated in the form

&
[ ol <.
[
Now, whenever higher order modes are considered where

¥ % [Ta(x), Na@)] g Smgms, n0

and

Na(x) ~x(x—0), n=123--

then the finite energy condition suffices to prohibit the use of the
Neumann functions.

However, for regions with rotational symmetry where the lowest
order admissable solution is

Y& | Jo(x), No(#)
and

No(x) ~ log x{x — 0)

there results
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f x(log x)%dx < M,.
0

Hence, in this case, the finite energy condition is not sufficient.

This question is resolved only when, instead of restricting our
attention to the axial field components, all the field components are
examined. For the lowest order mode the following result is then
obtained:

(Hr, E;) & Ni(x) ~ a7 (x— 0)

and it is observed that, unless sources are present on the axis, such a
solution is not acceptable.

Thus the crucial condition in rejection Bessel functions of the
second kind is not boundedness nor finite energy, but that the
region must be source free!

When the fractional-order Bessel functions arise, as is the case in
reentrant sectorial cylindrical guides, then again the finite energy
condition on the axial field components is not sufficient, but the radial
components must be examined. The order of the singular behavior is
such that Neumann solutions would indicate line sources on the edge
of the reentrant sector. Thus, unless appropriate line sources are
specified, such solutions must be eliminated.

A further related point should be considered. In problems involv-
mg cylindrical geometries, in particular the circular cylinder or
coaxial circular cylinder, the solution of the wave equations yields
trigonometric functions in the angular coordinate. If radial planes
restrict the range of the angular coordinate, then the separation con-
stant multiplying the angular coordinate in the argument of the
trigonometric functions is determined explicitly by the boundary
condition on the radial planes. However, if no such subdivision
occurs, then, too often, the single-valuedness condition on the field
quantities is used to obtain the undoubtedly correct result that the
separation constant must be an integer. The single valuedness of the
solution can only be used if the angular variable is allowed to range
over — v <¢ < ©, say, and such need not be the case since restricting
the range of ¢ to —m L¢ <, or o< <o+2m, does not detract from
the generality of the problem solution. In that event, single valued-
ness cannot be used, and the integral value of the separation constant
must be arrived at through the condition that the field must be every-
where continuous. If any value other than an integral value is taken,
a discontinuity in the field will occur at ¢ =¢q, which would indicate
the presence of a radial sheet of sources. It then follows that, if no



